Tetrahedron Letters, Vol.27, No.13, pp 1509-1512, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

CYCLOADDITION REACTIONS LEADING TO CARBOHYDRATE DERIVATIVES

PART I.

HETERO DIELS-ALDER REACTION OF MONOSACCHARIDE O-THIOFORMATES

Pál Herczegh, Martina Zsély, Rezső Bognár^{*} Research Group of Antibiotics, Hungarian Academy of Sciences,

László Szilágyi

Department of Organic Chemistry, L. Kossuth University 4010 Debrecen, Hungary

Summary: Monosaccharide O-thioformates under thermal or highpressure conditions react with various dienes to give O-thiopyran-2-yl saccharides

In recent years substantial progress¹ has been made in making the pyranose framework of carbohydrates by means of the Diels-Alder reaction. Although cycloaddition reactions of thiocarbonyl compounds represent an intensely studied subject² only a single example³ has been reported hitherto for the utilization of such process for the synthesis of carbohydrates containing sulphur in the pyranose ring. While thioketones and thioalde-hydes are known as reactive dienophiles² the reactivity of dithioesters is considerably lower and thus their Diels-Alder reactions are much less studied. The dienophilic character of the latter compounds can be enhanced by an α -substitution with an electron withdrawing group and so the resulting cyanodithioformates⁴, dithiooxalates⁵ and dithiopyruvates⁵ react more readily with dienes.

Alkyl- and aryl-dithiocarboxylates react with dienes only at an elevated temperature⁶ and among such transformations of O-alkyl-thiocarboxylates the reaction⁷ of di-O-methyl-dithiooxalate with dimethylbutadiene is the only known example.

With the goal of synthesizing thiosugar derivatives containing sulphur in the pyranose ring the cycloaddition reactions of two monosaccha-

ride O-thioformates were studied. The starting materials ($\frac{1}{2}$ and $\frac{2}{2}$) were prepared from 1,2:5,6-di-D-isopropylidene- α -D-glucofuranose⁸ and 1,2:3,4-di-D-

isopropylidene- α -D-galactopyranose⁹, respectively, according to the method of Barton and McCombie¹⁰.

Treatment of $\underline{1}$ and $\underline{2}$ with butadiene or 2,3-dimethylbutadiene in toluene solution in sealed tube for 10-16 h at 150 $^{\text{O}}$ C gave the 2,3-dihydro-6Hthiopyran-2-yl saccharides $\underline{3}$, $\underline{4}$, $\underline{5}$ and $\underline{6}$. In the thermal reactions only low chiral induction occurs and an approximately 1:1 mixture of two diastereoisomeric products¹¹ is formed. As the stereoselectivity of the Diels-Alder additions can be generally enhanced by the application of high pressure¹² the reaction of $\underline{1}$ with 2,3-dimethylbutadiene was also performed at 2.5 kbar pressure for 6 days, and in this case the ratio of diastereoisomers produced was 5:2. Treatment of $\underline{1}$ and $\underline{2}$ with the 2-trimethylsilyloxybutadiene¹³ and subsequent methanolysis of the resulting enolethers gave $\underline{7}$ and $\underline{8}$, respecti-

^aRatio of diastereoisomers

^bRatio of diastereoisomers in cycloaddition reaction performed at 2.5 kbar vely. NMR spectroscopic investigation¹⁴ of the products demonstrated that the cycloaddition reactions had proceeded regioselectively and 2,3,5,6tetrahydrothian-4-on-2-yl-saccharides were obtained upon methanolysis.

The structures of the products were identified by means 1 H- and 13 C-NMR spectra, by mass spectrometry and by elemental analysis 15 . The diastereoisomeric mixtures $\underline{3}$, $\underline{5}$ and $\underline{7}$ have been separated on Kieselgel column, but separation of mixtures $\underline{4}$, $\underline{6}$ and $\underline{8}$ was unsuccesful in the solvent systems we used.

The prepared cycloadducts described here can be regarded as intermediates for the preparation of novel disaccharides. To our knowledge, no disaccharides carrying a monosaccharide unit with a sulphur in the ring have been hitherto synthesized.

Acknowledgements

We are grateful to the Hungarian Academy of sciences for financial support. (MTA TPA KKTI)

References and footnotes

l. S. David, A. Lubineau, A. Thieffry, <u>Tetrahedron</u> , <u>34</u> , 299 (1978);
S. David, A. Lubineau, A. Thieffry, <u>Nouv. J. Chim., 1</u> , 375 (1977);
S. J. Danishefsky, C. J. Maring, <u>J. Am. Chem. Soc., 107</u> , 1269 (1985);
S. J. Danishersky, W. H. Pearson, B. E. Segmuller, ibid., 107, 1280 (1985);
S. J. Danishefsky, E. Larson, J. P. Springer, ibid., 107, 1274 (1985);
S. J. Danishefsky, W. H. Pearson, D. F. Harvey, C. J. Maring, J. P.
Springer, ibid., 107, 1256 (1985) and references cited therein.
2. S. M. Weinreb, R. R. Staib, Tetrahedron, 38, 3087 (1982)
3. D. M. Vyas, G. W. Hay, J. Chem. Soc. Perkin Trans. I, 180 (1975)
4. D. M. Vyas, G. W. Hay, Canad. J. Chem., 49, 3755 (1971)
5. E. Vedejs, M. J. Arnost, J. M. Dolphin, J. Eustache, J. Org. Chem., 45,
2601 (1980)
6. P. Beslin, P. Metsner, <u>Tetrahedron Lett.</u> , 4657 (1980)
7. K. Hartke, G. Henssen, T. Kissel, <u>Liebigs Ann. Chem</u> ., 1665 (1980)
B. <u>Methods on Carbohydrate Chemistry</u> , Ed. R. L. Whistler, J. N. BeMiller,
Vol. 2., p. 320., Academic Press, New York and London
9. <u>ibid</u> ., p. 324.
10. D. H. R. Barton, S. W. McCombie, J. Chem. Soc. Perkin Trans. I, 1575 (1975)
ll. The ratio of diastereoisomers was determined from the ratio of the in-
tegrated 1 H-NMR signals of H-2 of the thiane ring.
12. J. Jurczak, T. Bauer, S. Filipek, M. Tkatz, K. Zygo, <u>J. Chem. Soc.</u> ,
<u>Chem. Commun</u> ., 540 (1983)
13. J. Bélanger, N. L. Landry, J. R. J. Paré, K. Jankowski, <u>J. Org. Chem.</u> ,
<u>47</u> , 3649 (1982)

Detailed analyses of the spectra will be presented elsewhere.
All new compounds gave satisfactory elemental analyses for C, H and S.

(Received in UK 7 February 1986)